The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia.
نویسندگان
چکیده
Macrophage receptor with collagenous structure (MARCO) is a scavenger receptor expressed in peritoneal macrophages and in a subpopulation of macrophages in the marginal zone of the spleen and in the medullary cord of lymph nodes. By global gene expression analysis, it has been found that the MARCO mRNA was one of the most up-regulated in splenic dendritic cells (DCs) following lipopolysaccharide or bacterial activation and in granulocyte-macrophage colony-stimulating factor (GM-CSF)-treated microglial cells. Here we show that MARCO is expressed on splenic DCs at late time points after activation and that its expression correlates with profound changes in actin cytoskeleton organization in DCs and microglia. During maturation, DCs undergo profound rearrangements of actin cytoskeleton. Immature DCs are adherent with visible actin cables, while fully mature, MARCO-expressing, splenic DCs are nonadherent, round in shape, and have an actin cytoskeleton with a punctate distribution. The simple expression of MARCO was sufficient to induce these cytoskeleton modifications in DCs. MARCO-transfected immature DCs acquired a typical morphology of mature DCs and did not rearrange the actin cytoskeleton following activation. Moreover, DCs in which MARCO was knocked down did not reach the mature phenotype and maintained the typical morphology of transitional DCs. MARCO expression in DCs and microglial cells was also associated with a decrease of antigen internalization capacity. Thus, the MARCO receptor is important for actin cytoskeleton rearrangements and the down-regulation of antigen uptake function during DC and microglial cell maturation.
منابع مشابه
The Scavenger Receptor MARCO Modulates TLR-Induced Responses in Dendritic Cells
The scavenger receptor MARCO mediates macrophage recognition and clearance of pathogens and their polyanionic ligands. However, recent studies demonstrate MARCO expression and function in dendritic cells, suggesting MARCO might serve to bridge innate and adaptive immunity. To gain additional insight into the role of MARCO in dendritic cell activation and function, we profiled transcriptomes of ...
متن کاملExpression of Scavenger Receptors in Glial Cells COMPARING THE ADHESION OF ASTROCYTES AND MICROGLIA FROM NEONATAL RATS TO SURFACE-BOUND -AMYLOID*
Astrocytes and microglia associate to amyloid plaques, a pathological hallmark of Alzheimer disease. Microglia are activated by and can phagocytose -amyloid (A ). Scavenger receptors (SRs) are among the receptors mediating the uptake of fibrillar A in vitro. However, little is known about the function of the astrocytes surrounding the plaques or the nature of their interaction with A . It is un...
متن کاملExpression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid.
Astrocytes and microglia associate to amyloid plaques, a pathological hallmark of Alzheimer disease. Microglia are activated by and can phagocytose beta-amyloid (Abeta). Scavenger receptors (SRs) are among the receptors mediating the uptake of fibrillar Abeta in vitro. However, little is known about the function of the astrocytes surrounding the plaques or the nature of their interaction with A...
متن کاملP171: Microglia Cell, Major Player in the Central Nervous System Inflammation
Inflammation, a self-defensive reaction against various pathogenic stimuli, may become harmful self-damaging process. Increasing evidence has linked chronic inflammation to a number of neurodegenerative disorders including alzheimer's disease (AD), parkinson's disease (PD), and multiple sclerosis (MS). In the central nervous system, microglia, the resident innate immune cells play major role in...
متن کاملExamination of MARCO Activity on Dendritic Cell Phenotype and Function Using a Gene Knockout Mouse
We have reported the upregulation of MARCO, a member of the class A scavenger receptor family, on the surface of murine and human dendritic cells (DCs) pulsed with tumor lysates. Exposure of murine tumor lysate-pulsed DCs to an anti-MARCO antibody led to loss of dendritic-like processes and enhanced migratory capacity. In this study, we have further examined the biological and therapeutic impli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 102 8 شماره
صفحات -
تاریخ انتشار 2003